Video scene change detection using neural network: Improved ART2

Man Hee Lee, Hun Woo Yoo, Dong Sik Jang

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

A common video indexing technique is to segment a video sequence into shots and then select representative key-frames. This paper proposes a new method using an improved ART2 neural network for scene change detection. The proposed algorithm extracts DC-sequence from a video and then makes a gray variance sequence for detecting smooth intervals. During that procedure, a local minimum sequence occurring at typical gradual changes is extracted and eliminated from the smooth intervals by our local minimum detection algorithm. Then, a new sequence is constructed by concatenating obtained smooth intervals. Feature elements such as pixel-wise difference, histogram difference, and correlation coefficients are extracted from the new sequence. These three elements, plus one extra element reducing the distortion of the ART2 neural network, are presented as an input vector to the ART2 neural network that has two output units in the F2 layer. Frames at the ends of each smooth interval are assigned to the second cluster that represents key-frames. Experimental results showed that the proposed algorithm using the extra element was better than the method without it in terms of precision and recall rates. Also, it produced better results than Patel's method (Patel and Sethi, 1996) and the twin comparison method (Zhang et al., 1993).

Original languageEnglish
Pages (from-to)13-25
Number of pages13
JournalExpert Systems With Applications
Volume31
Issue number1
DOIs
Publication statusPublished - 2006 Jul

Keywords

  • Local minimum sequence
  • Neural network, ART2
  • Scene change detection
  • Smooth intervals
  • Variance

ASJC Scopus subject areas

  • Engineering(all)
  • Computer Science Applications
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Video scene change detection using neural network: Improved ART2'. Together they form a unique fingerprint.

Cite this