VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data

Jaegul Choo, Changhyun Lee, Hannah Kim, Hanseung Lee, Zhicheng Liu, Ramakrishnan Kannan, Charles D. Stolper, John Stasko, Barry L. Drake, Haesun Park

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

We present VisIRR, an interactive visual information retrieval and recommendation system for large-scale document data. Starting with a query, VisIRR visualizes the retrieved documents in a scatter plot along with their topic summary. Next, based on interactive personalized preference feedback on the documents, VisIRR collects and visualizes potentially relevant documents out of the entire corpus so that an integrated analysis of both retrieved and recommended documents can be performed seamlessly.

Original languageEnglish
Title of host publication2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings
EditorsChris North, Min Chen, David Ebert
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages243-244
Number of pages2
ISBN (Electronic)9781479962273
DOIs
Publication statusPublished - 2015 Feb 13
Externally publishedYes
Event2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Paris, France
Duration: 2014 Oct 92014 Oct 14

Publication series

Name2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings

Conference

Conference2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014
CountryFrance
CityParis
Period14/10/914/10/14

Keywords

  • clustering
  • dimension reduction
  • document analysis
  • information retrieval
  • Recommendation
  • scatter plot

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data'. Together they form a unique fingerprint.

  • Cite this

    Choo, J., Lee, C., Kim, H., Lee, H., Liu, Z., Kannan, R., Stolper, C. D., Stasko, J., Drake, B. L., & Park, H. (2015). VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data. In C. North, M. Chen, & D. Ebert (Eds.), 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings (pp. 243-244). [7042511] (2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/VAST.2014.7042511