VisIRR

Visual analytics for information retrieval and recommendation with large-scale document data

Jaegul Choo, Changhyun Lee, Hannah Kim, Hanseung Lee, Zhicheng Liu, Ramakrishnan Kannan, Charles D. Stolper, John Stasko, Barry L. Drake, Haesun Park

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

We present VisIRR, an interactive visual information retrieval and recommendation system for large-scale document data. Starting with a query, VisIRR visualizes the retrieved documents in a scatter plot along with their topic summary. Next, based on interactive personalized preference feedback on the documents, VisIRR collects and visualizes potentially relevant documents out of the entire corpus so that an integrated analysis of both retrieved and recommended documents can be performed seamlessly.

Original languageEnglish
Title of host publication2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings
EditorsChris North, Min Chen, David Ebert
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages243-244
Number of pages2
ISBN (Electronic)9781479962273
DOIs
Publication statusPublished - 2015 Feb 13
Externally publishedYes
Event2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Paris, France
Duration: 2014 Oct 92014 Oct 14

Publication series

Name2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings

Conference

Conference2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014
CountryFrance
CityParis
Period14/10/914/10/14

Fingerprint

Information retrieval systems
Recommender systems
Information retrieval
Feedback

Keywords

  • clustering
  • dimension reduction
  • document analysis
  • information retrieval
  • Recommendation
  • scatter plot

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Cite this

Choo, J., Lee, C., Kim, H., Lee, H., Liu, Z., Kannan, R., ... Park, H. (2015). VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data. In C. North, M. Chen, & D. Ebert (Eds.), 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings (pp. 243-244). [7042511] (2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/VAST.2014.7042511

VisIRR : Visual analytics for information retrieval and recommendation with large-scale document data. / Choo, Jaegul; Lee, Changhyun; Kim, Hannah; Lee, Hanseung; Liu, Zhicheng; Kannan, Ramakrishnan; Stolper, Charles D.; Stasko, John; Drake, Barry L.; Park, Haesun.

2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings. ed. / Chris North; Min Chen; David Ebert. Institute of Electrical and Electronics Engineers Inc., 2015. p. 243-244 7042511 (2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Choo, J, Lee, C, Kim, H, Lee, H, Liu, Z, Kannan, R, Stolper, CD, Stasko, J, Drake, BL & Park, H 2015, VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data. in C North, M Chen & D Ebert (eds), 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings., 7042511, 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 243-244, 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014, Paris, France, 14/10/9. https://doi.org/10.1109/VAST.2014.7042511
Choo J, Lee C, Kim H, Lee H, Liu Z, Kannan R et al. VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data. In North C, Chen M, Ebert D, editors, 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings. Institute of Electrical and Electronics Engineers Inc. 2015. p. 243-244. 7042511. (2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings). https://doi.org/10.1109/VAST.2014.7042511
Choo, Jaegul ; Lee, Changhyun ; Kim, Hannah ; Lee, Hanseung ; Liu, Zhicheng ; Kannan, Ramakrishnan ; Stolper, Charles D. ; Stasko, John ; Drake, Barry L. ; Park, Haesun. / VisIRR : Visual analytics for information retrieval and recommendation with large-scale document data. 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings. editor / Chris North ; Min Chen ; David Ebert. Institute of Electrical and Electronics Engineers Inc., 2015. pp. 243-244 (2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings).
@inproceedings{9c4f2456e075462eaaff18778626574f,
title = "VisIRR: Visual analytics for information retrieval and recommendation with large-scale document data",
abstract = "We present VisIRR, an interactive visual information retrieval and recommendation system for large-scale document data. Starting with a query, VisIRR visualizes the retrieved documents in a scatter plot along with their topic summary. Next, based on interactive personalized preference feedback on the documents, VisIRR collects and visualizes potentially relevant documents out of the entire corpus so that an integrated analysis of both retrieved and recommended documents can be performed seamlessly.",
keywords = "clustering, dimension reduction, document analysis, information retrieval, Recommendation, scatter plot",
author = "Jaegul Choo and Changhyun Lee and Hannah Kim and Hanseung Lee and Zhicheng Liu and Ramakrishnan Kannan and Stolper, {Charles D.} and John Stasko and Drake, {Barry L.} and Haesun Park",
year = "2015",
month = "2",
day = "13",
doi = "10.1109/VAST.2014.7042511",
language = "English",
series = "2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "243--244",
editor = "Chris North and Min Chen and David Ebert",
booktitle = "2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings",

}

TY - GEN

T1 - VisIRR

T2 - Visual analytics for information retrieval and recommendation with large-scale document data

AU - Choo, Jaegul

AU - Lee, Changhyun

AU - Kim, Hannah

AU - Lee, Hanseung

AU - Liu, Zhicheng

AU - Kannan, Ramakrishnan

AU - Stolper, Charles D.

AU - Stasko, John

AU - Drake, Barry L.

AU - Park, Haesun

PY - 2015/2/13

Y1 - 2015/2/13

N2 - We present VisIRR, an interactive visual information retrieval and recommendation system for large-scale document data. Starting with a query, VisIRR visualizes the retrieved documents in a scatter plot along with their topic summary. Next, based on interactive personalized preference feedback on the documents, VisIRR collects and visualizes potentially relevant documents out of the entire corpus so that an integrated analysis of both retrieved and recommended documents can be performed seamlessly.

AB - We present VisIRR, an interactive visual information retrieval and recommendation system for large-scale document data. Starting with a query, VisIRR visualizes the retrieved documents in a scatter plot along with their topic summary. Next, based on interactive personalized preference feedback on the documents, VisIRR collects and visualizes potentially relevant documents out of the entire corpus so that an integrated analysis of both retrieved and recommended documents can be performed seamlessly.

KW - clustering

KW - dimension reduction

KW - document analysis

KW - information retrieval

KW - Recommendation

KW - scatter plot

UR - http://www.scopus.com/inward/record.url?scp=84929492509&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929492509&partnerID=8YFLogxK

U2 - 10.1109/VAST.2014.7042511

DO - 10.1109/VAST.2014.7042511

M3 - Conference contribution

T3 - 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings

SP - 243

EP - 244

BT - 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings

A2 - North, Chris

A2 - Chen, Min

A2 - Ebert, David

PB - Institute of Electrical and Electronics Engineers Inc.

ER -