TY - GEN
T1 - Visualization of scoop inlet-induced circular isolator flows using planar laser Rayleigh scattering imaging
AU - Di Cristina, Giovanni
AU - Im, Seong Kyun
AU - Choi, Jong Ho
AU - Kang, Kyungrae
AU - Do, Hyungrok
N1 - Funding Information:
This work was supported by Basic Research Funding of Korean Agency for Defense Development (Project Number: 15-201-502-025).
Funding Information:
This work was supported Number: 15-201-502-025).
Publisher Copyright:
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2018
Y1 - 2018
N2 - The visualization of scoop model inlet-induced circular isolator flows was performed using a planar laser Rayleigh scattering (PLRS) imaging technique at a hypersonic flow facility. The scoop model was designed for a cruise Mach number (Ma) of 6. Two contraction ratios of the scoop inlet, 4 and 5, were investigated at various unit length Reynolds number (Reℓ) conditions. Two freestream Ma = 4.5 and 6 were tested to investigate the robustness of the scoop model inlet for the off-design conditions. Pseudo-three-dimensional flow structures of the isolator were constructed by using averaged planar images from multiple two dimensional imaging planes. The visualization showed that Re determines the thickness of the boundary layer and the size of eddies. Similar overall flow and shockwave structures were observed for different Ma and Re conditions, which are indicative of the robustness of the scoop inlet. Curved shockwaves and localized flow separation were inferred from the flow visualization. Differences in shockwave angles, shock impinging location, the size of the core flow, and the size of the flow structure were discussed. The experimental results were compared with the results from large-eddy simulations, which confirmed the inferred flow structures.
AB - The visualization of scoop model inlet-induced circular isolator flows was performed using a planar laser Rayleigh scattering (PLRS) imaging technique at a hypersonic flow facility. The scoop model was designed for a cruise Mach number (Ma) of 6. Two contraction ratios of the scoop inlet, 4 and 5, were investigated at various unit length Reynolds number (Reℓ) conditions. Two freestream Ma = 4.5 and 6 were tested to investigate the robustness of the scoop model inlet for the off-design conditions. Pseudo-three-dimensional flow structures of the isolator were constructed by using averaged planar images from multiple two dimensional imaging planes. The visualization showed that Re determines the thickness of the boundary layer and the size of eddies. Similar overall flow and shockwave structures were observed for different Ma and Re conditions, which are indicative of the robustness of the scoop inlet. Curved shockwaves and localized flow separation were inferred from the flow visualization. Differences in shockwave angles, shock impinging location, the size of the core flow, and the size of the flow structure were discussed. The experimental results were compared with the results from large-eddy simulations, which confirmed the inferred flow structures.
UR - http://www.scopus.com/inward/record.url?scp=85141612956&partnerID=8YFLogxK
U2 - 10.2514/6.2018-1612
DO - 10.2514/6.2018-1612
M3 - Conference contribution
AN - SCOPUS:85141612956
SN - 9781624105241
T3 - AIAA Aerospace Sciences Meeting, 2018
BT - AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aerospace Sciences Meeting, 2018
Y2 - 8 January 2018 through 12 January 2018
ER -