Weakly Supervised Segmentation of Small Buildings with Point Labels

Jae Hun Lee, Chan Young Kim, Sanghoon Sull

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7386-7395
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 2021 Oct 112021 Oct 17

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/10/1121/10/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Weakly Supervised Segmentation of Small Buildings with Point Labels'. Together they form a unique fingerprint.

Cite this