Abstract
The development of efficient and inexpensive electrocatalysts is regarded as an urgent concern in electrochemical water-splitting system. Herein, we propose a novel strategy for the fabrication of molybdenum phosphide nanoparticles (MoP NPs) anchored on porous carbon cloth (MoP@PCC) as a noble metal–free electrocatalyst for hydrogen evolution reaction (HER). Benefiting from the thin and uniform coating of ultrafine molybdenum dioxide (MoO2) NPs on PCC, less-aggregated MoP NPs can be formed on PCC after thermal phosphidation, resulting in an efficient performance for HER over a wide pH range. Particularly, MoP@PCC exhibited good electrocatalytic activities in alkaline and neutral solutions with low overpotentials of 122 and 160 mV at a current density of −10 mA cm−2, respectively. Additionally, MoP@PCC exhibited long-term stability and durability with continuous 10,000 cyclic voltammetry (CV) cycles and chronopotentiometric operation over 50 h, both in alkaline and neutral solutions.
Original language | English |
---|---|
Pages (from-to) | 9347-9353 |
Number of pages | 7 |
Journal | Ceramics International |
Volume | 47 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2021 Apr 1 |
Keywords
- Electrocatalyst
- Freestanding
- Hydrogen evolution reaction
- Molybdenum phosphide
- Wide pH
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry