Wnt signal activation induces midbrain specification through direct binding of the beta-catenin/TCF4 complex to the EN1 promoter in human pluripotent stem cells

Ji Young Kim, Jae Souk Lee, Hyun Sub Hwang, Dongjin R. Lee, Chul Yong Park, Sung Jun Jung, Young Rang You, Dae Sung Kim, Dong Wook Kim

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The canonical Wnt signal pathway plays a pivotal role in anteroposterior patterning and midbrain specification during early neurogenesis. Activating Wnt signal has been a strategy for differentiating human pluripotent stem cells (PSCs) into midbrain dopaminergic (DA) neurons; however, the underlying molecular mechanism(s) of how the Wnt signal drives posterior fate remained unclear. In this study, we found that activating the canonical Wnt signal significantly upregulated the expression of EN1, a midbrain-specific marker, in a fibroblast growth factor signal-dependent manner in human PSC-derived neural precursor cells (NPCs). The EN1 promoter region contains a putative TCF4-binding site that directly interacts with the β-catenin/TCF complex upon Wnt signal activation. Once differentiated, NPCs treated with a Wnt signal agonist gave rise to functional midbrain neurons including glutamatergic, GABAergic, and DA neurons. Our results provide a potential molecular mechanism that underlies midbrain specification of human PSC-derived NPCs by Wnt activation, as well as a differentiation paradigm for generating human midbrain neurons that may serve as a cellular platform for studying the ontogenesis of midbrain neurons and neurological diseases relevant to the midbrain.

Original languageEnglish
Article number24
JournalExperimental and Molecular Medicine
Volume50
Issue number4
DOIs
Publication statusPublished - 2018 Apr 1

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Wnt signal activation induces midbrain specification through direct binding of the beta-catenin/TCF4 complex to the EN1 promoter in human pluripotent stem cells'. Together they form a unique fingerprint.

Cite this