Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes

Bhavana Joshi, Sera Park, Edmund Samuel, Hong Seok Jo, Seongpil An, Min Woo Kim, Mark T. Swihart, Je Moon Yun, Kwang Ho Kim, Suk Goo Yoon

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Zeolitic imidazole frameworks (ZIFs) are a class of metal organic frameworks (MOFs) with diverse energy-related applications. High-surface area materials derived from ZIFs can serve as electrodes with good long-term capacity retention. Herein, we demonstrate an electrospun ZIF7/carbon nanofiber (CNF) derived nanocomposite as a freestanding electrode for supercapacitors with excellent capacitance retention. The optimal ZIF7 composite nanofiber carbonized at 950 °C exhibited a specific capacitance of 202 F·g−1 at a current density of 1 A·g−1 and ~98% specific capacitance retention after 5000 charge–discharge cycles. N-doped nanoporous C and the Zn framework of ZIF7 composite fibers delivered an energy density of 42 W·h·kg−1 at a power density of 0.6 kW·kg−1. These scalable ZIF7/CNF composite textiles (30 × 10 cm2) can be used as freestanding supercapacitor electrodes without a separate substrate or current collector.

Original languageEnglish
Pages (from-to)239-247
Number of pages9
JournalJournal of Electroanalytical Chemistry
Volume810
DOIs
Publication statusPublished - 2018 Feb 1

Fingerprint

Nanocomposites
Textiles
Carbon nanofibers
Capacitance
Electrodes
Fibers
Composite materials
Nanofibers
Current density
Metals
Substrates
Supercapacitor
imidazole

Keywords

  • Electrospinning
  • Metal-organic frameworks
  • Nanoporous carbon
  • Supercapacitor
  • ZIF7

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemical Engineering(all)
  • Electrochemistry

Cite this

Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. / Joshi, Bhavana; Park, Sera; Samuel, Edmund; Jo, Hong Seok; An, Seongpil; Kim, Min Woo; Swihart, Mark T.; Yun, Je Moon; Kim, Kwang Ho; Yoon, Suk Goo.

In: Journal of Electroanalytical Chemistry, Vol. 810, 01.02.2018, p. 239-247.

Research output: Contribution to journalArticle

Joshi, Bhavana ; Park, Sera ; Samuel, Edmund ; Jo, Hong Seok ; An, Seongpil ; Kim, Min Woo ; Swihart, Mark T. ; Yun, Je Moon ; Kim, Kwang Ho ; Yoon, Suk Goo. / Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. In: Journal of Electroanalytical Chemistry. 2018 ; Vol. 810. pp. 239-247.
@article{2017b53b791e4cb28401a0e17117eec2,
title = "Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes",
abstract = "Zeolitic imidazole frameworks (ZIFs) are a class of metal organic frameworks (MOFs) with diverse energy-related applications. High-surface area materials derived from ZIFs can serve as electrodes with good long-term capacity retention. Herein, we demonstrate an electrospun ZIF7/carbon nanofiber (CNF) derived nanocomposite as a freestanding electrode for supercapacitors with excellent capacitance retention. The optimal ZIF7 composite nanofiber carbonized at 950 °C exhibited a specific capacitance of 202 F·g−1 at a current density of 1 A·g−1 and ~98{\%} specific capacitance retention after 5000 charge–discharge cycles. N-doped nanoporous C and the Zn framework of ZIF7 composite fibers delivered an energy density of 42 W·h·kg−1 at a power density of 0.6 kW·kg−1. These scalable ZIF7/CNF composite textiles (30 × 10 cm2) can be used as freestanding supercapacitor electrodes without a separate substrate or current collector.",
keywords = "Electrospinning, Metal-organic frameworks, Nanoporous carbon, Supercapacitor, ZIF7",
author = "Bhavana Joshi and Sera Park and Edmund Samuel and Jo, {Hong Seok} and Seongpil An and Kim, {Min Woo} and Swihart, {Mark T.} and Yun, {Je Moon} and Kim, {Kwang Ho} and Yoon, {Suk Goo}",
year = "2018",
month = "2",
day = "1",
doi = "10.1016/j.jelechem.2018.01.012",
language = "English",
volume = "810",
pages = "239--247",
journal = "Journal of Electroanalytical Chemistry",
issn = "1572-6657",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes

AU - Joshi, Bhavana

AU - Park, Sera

AU - Samuel, Edmund

AU - Jo, Hong Seok

AU - An, Seongpil

AU - Kim, Min Woo

AU - Swihart, Mark T.

AU - Yun, Je Moon

AU - Kim, Kwang Ho

AU - Yoon, Suk Goo

PY - 2018/2/1

Y1 - 2018/2/1

N2 - Zeolitic imidazole frameworks (ZIFs) are a class of metal organic frameworks (MOFs) with diverse energy-related applications. High-surface area materials derived from ZIFs can serve as electrodes with good long-term capacity retention. Herein, we demonstrate an electrospun ZIF7/carbon nanofiber (CNF) derived nanocomposite as a freestanding electrode for supercapacitors with excellent capacitance retention. The optimal ZIF7 composite nanofiber carbonized at 950 °C exhibited a specific capacitance of 202 F·g−1 at a current density of 1 A·g−1 and ~98% specific capacitance retention after 5000 charge–discharge cycles. N-doped nanoporous C and the Zn framework of ZIF7 composite fibers delivered an energy density of 42 W·h·kg−1 at a power density of 0.6 kW·kg−1. These scalable ZIF7/CNF composite textiles (30 × 10 cm2) can be used as freestanding supercapacitor electrodes without a separate substrate or current collector.

AB - Zeolitic imidazole frameworks (ZIFs) are a class of metal organic frameworks (MOFs) with diverse energy-related applications. High-surface area materials derived from ZIFs can serve as electrodes with good long-term capacity retention. Herein, we demonstrate an electrospun ZIF7/carbon nanofiber (CNF) derived nanocomposite as a freestanding electrode for supercapacitors with excellent capacitance retention. The optimal ZIF7 composite nanofiber carbonized at 950 °C exhibited a specific capacitance of 202 F·g−1 at a current density of 1 A·g−1 and ~98% specific capacitance retention after 5000 charge–discharge cycles. N-doped nanoporous C and the Zn framework of ZIF7 composite fibers delivered an energy density of 42 W·h·kg−1 at a power density of 0.6 kW·kg−1. These scalable ZIF7/CNF composite textiles (30 × 10 cm2) can be used as freestanding supercapacitor electrodes without a separate substrate or current collector.

KW - Electrospinning

KW - Metal-organic frameworks

KW - Nanoporous carbon

KW - Supercapacitor

KW - ZIF7

UR - http://www.scopus.com/inward/record.url?scp=85041472647&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041472647&partnerID=8YFLogxK

U2 - 10.1016/j.jelechem.2018.01.012

DO - 10.1016/j.jelechem.2018.01.012

M3 - Article

AN - SCOPUS:85041472647

VL - 810

SP - 239

EP - 247

JO - Journal of Electroanalytical Chemistry

JF - Journal of Electroanalytical Chemistry

SN - 1572-6657

ER -