Zero mean curvature surfaces in L 3 containing a light-like line

S. Fujimori, Young Wook Kim, S. E. Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara, K. Yamada, Seong-Deog Yang

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz-Minkowski 3-space L 3 have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.

Original languageEnglish
Pages (from-to)975-978
Number of pages4
JournalComptes Rendus Mathematique
Volume350
Issue number21-22
DOIs
Publication statusPublished - 2012 Nov 1

Fingerprint

Maximal Surfaces
Spacelike Surface
Singular Set
L-space
Minimal surface
Mean Curvature
Singularity
Metric
Line
Zero

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Zero mean curvature surfaces in L 3 containing a light-like line. / Fujimori, S.; Kim, Young Wook; Koh, S. E.; Rossman, W.; Shin, H.; Takahashi, H.; Umehara, M.; Yamada, K.; Yang, Seong-Deog.

In: Comptes Rendus Mathematique, Vol. 350, No. 21-22, 01.11.2012, p. 975-978.

Research output: Contribution to journalArticle

Fujimori, S, Kim, YW, Koh, SE, Rossman, W, Shin, H, Takahashi, H, Umehara, M, Yamada, K & Yang, S-D 2012, 'Zero mean curvature surfaces in L 3 containing a light-like line', Comptes Rendus Mathematique, vol. 350, no. 21-22, pp. 975-978. https://doi.org/10.1016/j.crma.2012.10.024
Fujimori, S. ; Kim, Young Wook ; Koh, S. E. ; Rossman, W. ; Shin, H. ; Takahashi, H. ; Umehara, M. ; Yamada, K. ; Yang, Seong-Deog. / Zero mean curvature surfaces in L 3 containing a light-like line. In: Comptes Rendus Mathematique. 2012 ; Vol. 350, No. 21-22. pp. 975-978.
@article{9c41ecdc62584c1383dc74b174c5b765,
title = "Zero mean curvature surfaces in L 3 containing a light-like line",
abstract = "It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz-Minkowski 3-space L 3 have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.",
author = "S. Fujimori and Kim, {Young Wook} and Koh, {S. E.} and W. Rossman and H. Shin and H. Takahashi and M. Umehara and K. Yamada and Seong-Deog Yang",
year = "2012",
month = "11",
day = "1",
doi = "10.1016/j.crma.2012.10.024",
language = "English",
volume = "350",
pages = "975--978",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "21-22",

}

TY - JOUR

T1 - Zero mean curvature surfaces in L 3 containing a light-like line

AU - Fujimori, S.

AU - Kim, Young Wook

AU - Koh, S. E.

AU - Rossman, W.

AU - Shin, H.

AU - Takahashi, H.

AU - Umehara, M.

AU - Yamada, K.

AU - Yang, Seong-Deog

PY - 2012/11/1

Y1 - 2012/11/1

N2 - It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz-Minkowski 3-space L 3 have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.

AB - It is well known that space-like maximal surfaces and time-like minimal surfaces in Lorentz-Minkowski 3-space L 3 have singularities (i.e. points where the induced metric degenerates) in general. We are interested in the case where the singular set consists of a light-like line, since this case has not been analyzed before. In this Note, we give new examples of such surfaces.

UR - http://www.scopus.com/inward/record.url?scp=84870060243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870060243&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2012.10.024

DO - 10.1016/j.crma.2012.10.024

M3 - Article

AN - SCOPUS:84870060243

VL - 350

SP - 975

EP - 978

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 21-22

ER -