Abstract
Eutrophication caused by the excessive supply of phosphate to water bodies has been considered as one of the most important environmental problems. In this study, the powder of zirconium mesostructure (ZM), which was prepared with the template of surfactant, was immobilized in calcium alginate for practical application and the resulting material was tested to evaluate the phosphate removal efficiency. Sorption isotherms and kinetic parameters were obtained by using the entrapped ZM beads with 30 to 60% of ZM. The maximum sorption capacity increased with the higher ZM content. Q max in Langmuir isotherm was 51.74 mg/g for 60% of ZM with 7 mm of size. The smaller the particle size of the ZM beads, the faster the rate of phosphate removal, because the phosphate ions had less distance to reach the internal pores of the immobilized ZM beads. Chemical and electrochemical regeneration techniques were compared. Phosphates adsorbed on the ZM beads were effectively desorbed with NaCl, NaOH, and Na 2SO4 solutions. An electrochemical regeneration system consisting of an anion exchange membrane between two platinum-coated titanium electrodes was successfully used to desorb and regenerate the phosphate-saturated ZM beads. Complete regeneration was reached under optimal experimental conditions. Chemical and electrochemical regeneration proved the reusability of the bead form of the entrapped ZM, and will enhance the economical performance of the phosphate treatment process.
Original language | English |
---|---|
Pages (from-to) | 1040-1046 |
Number of pages | 7 |
Journal | Korean Journal of Chemical Engineering |
Volume | 25 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2008 Sep 1 |
Fingerprint
Keywords
- Adsorption
- Phosphate
- Regeneration
- Zirconium mesostructure
ASJC Scopus subject areas
- Chemistry(all)
- Chemical Engineering(all)
Cite this
Zirconium mesostructures immobilized in calcium alginate for phosphate removal. / Lee, Sang-Hyup; Yeon, Kyeong Ho; Park, Heesu; Lee, Seung Hak; Park, Yong Min; Iwamoto, Masakazu.
In: Korean Journal of Chemical Engineering, Vol. 25, No. 5, 01.09.2008, p. 1040-1046.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Zirconium mesostructures immobilized in calcium alginate for phosphate removal
AU - Lee, Sang-Hyup
AU - Yeon, Kyeong Ho
AU - Park, Heesu
AU - Lee, Seung Hak
AU - Park, Yong Min
AU - Iwamoto, Masakazu
PY - 2008/9/1
Y1 - 2008/9/1
N2 - Eutrophication caused by the excessive supply of phosphate to water bodies has been considered as one of the most important environmental problems. In this study, the powder of zirconium mesostructure (ZM), which was prepared with the template of surfactant, was immobilized in calcium alginate for practical application and the resulting material was tested to evaluate the phosphate removal efficiency. Sorption isotherms and kinetic parameters were obtained by using the entrapped ZM beads with 30 to 60% of ZM. The maximum sorption capacity increased with the higher ZM content. Q max in Langmuir isotherm was 51.74 mg/g for 60% of ZM with 7 mm of size. The smaller the particle size of the ZM beads, the faster the rate of phosphate removal, because the phosphate ions had less distance to reach the internal pores of the immobilized ZM beads. Chemical and electrochemical regeneration techniques were compared. Phosphates adsorbed on the ZM beads were effectively desorbed with NaCl, NaOH, and Na 2SO4 solutions. An electrochemical regeneration system consisting of an anion exchange membrane between two platinum-coated titanium electrodes was successfully used to desorb and regenerate the phosphate-saturated ZM beads. Complete regeneration was reached under optimal experimental conditions. Chemical and electrochemical regeneration proved the reusability of the bead form of the entrapped ZM, and will enhance the economical performance of the phosphate treatment process.
AB - Eutrophication caused by the excessive supply of phosphate to water bodies has been considered as one of the most important environmental problems. In this study, the powder of zirconium mesostructure (ZM), which was prepared with the template of surfactant, was immobilized in calcium alginate for practical application and the resulting material was tested to evaluate the phosphate removal efficiency. Sorption isotherms and kinetic parameters were obtained by using the entrapped ZM beads with 30 to 60% of ZM. The maximum sorption capacity increased with the higher ZM content. Q max in Langmuir isotherm was 51.74 mg/g for 60% of ZM with 7 mm of size. The smaller the particle size of the ZM beads, the faster the rate of phosphate removal, because the phosphate ions had less distance to reach the internal pores of the immobilized ZM beads. Chemical and electrochemical regeneration techniques were compared. Phosphates adsorbed on the ZM beads were effectively desorbed with NaCl, NaOH, and Na 2SO4 solutions. An electrochemical regeneration system consisting of an anion exchange membrane between two platinum-coated titanium electrodes was successfully used to desorb and regenerate the phosphate-saturated ZM beads. Complete regeneration was reached under optimal experimental conditions. Chemical and electrochemical regeneration proved the reusability of the bead form of the entrapped ZM, and will enhance the economical performance of the phosphate treatment process.
KW - Adsorption
KW - Phosphate
KW - Regeneration
KW - Zirconium mesostructure
UR - http://www.scopus.com/inward/record.url?scp=58149524811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149524811&partnerID=8YFLogxK
U2 - 10.1007/s11814-008-0170-7
DO - 10.1007/s11814-008-0170-7
M3 - Article
AN - SCOPUS:58149524811
VL - 25
SP - 1040
EP - 1046
JO - Korean Journal of Chemical Engineering
JF - Korean Journal of Chemical Engineering
SN - 0256-1115
IS - 5
ER -